278. Indicator Measurements with Amines in Anisole and Chlorobenzene Solution.

By R. P. BELL and J. W. BAYLES.

The basic strengths of 21 amines have been compared in anisole and chlorobenzene solutions by measuring their equilibria with the indicators 2:6-dinitrophenol and bromophenol-blue. The data are best interpreted quantitatively by assuming that the binary complexes of base and indicator are not associated further in solution, and do not dissociate into ions. The indicator constants in chlorobenzene differ very little from those in anisole. The values obtained provide a more rational account of the effect of alkyl substitution on basic strength than do dissociation constants in water, and it is concluded that the anomalies in the latter are largely due to hydrogenbonding with the solvent. The indicator constants in the decomposition of nitramide in the same solvent.

IF dissociation constants in water are used as a measure of the basic strengths of amines there are many apparent anomalies in the relations between structure and strength (cf., e.g., the numerous data given by Hall and Sprinkle, J. Amer. Chem. Soc., 1932, 54, 3469). In particular, it appears that the dissociation constants of primary, secondary, and tertiary amines are not directly comparable, and this effect has been attributed to hydrogen-bonding between water molecules and either the amine molecules (Moore and Winmill, J., 1912, 101, 1635) or their cations (Trotman-Dickenson, J., 1949, 1293; Evans and Hammann, Trans. Faraday Soc., 1951, 47, 34). It is therefore desirable to obtain data for the basic strengths of amines in non-hydroxylic solvents, and this is most readily done by means of indicator measurements. It is well known that there are often difficulties in the quantitative interpretation of indicator measurements in non-aqueous solvents (cf., e.g., LaMer and Downes, J. Amer. Chem. Soc., 1931, 53, 888; Baggesgaard-Rasmussen and Reimers, Dansk Tidsskr. Farm., 1933, 7, 225; Griffiths, J., 1938, 818), and our aim in the present investigation has been to obtain approximate comparable values for a large number of amines rather than to make an exact quantitative study of any one system. The solvents used were chlorobenzene and anisole, since these are devoid of any acidic properties and have been used previously in kinetic work on acid-base catalysis.

EXPERIMENTAL

Chlorobenzene and anisole were distilled, dried over phosphoric oxide, and redistilled through a column. The indicators used were 2:6-dinitrophenol and bromophenol-blue: the former was recrystallized from alcohol (m. p. 63.0°), and both were dried *in vacuo* over phosphoric oxide. Most of the amines were dried over potassium hydroxide for several days and then distilled. Their b. p.s were within 1° of the accepted values. *p*-Toluidine was dissolved in ligroin and shaken with activated alumina. It was then recrystallized twice and dried over phosphoric oxide *in vacuo* (m. p. 45°). Quinoline was precipitated as dichromate, which was decomposed by potassium hydroxide, and the amine separated by steam distillation, drying, and distilling *in vacuo*. *iso*Quinoline was partially frozen, distilled, and then fractionally frozen three times (m. p. $23-23.5^{\circ}$). All the amines were colourless, and gave colourless solutions in chlorobenzene and anisole.

The glass-ware and optical cells used for solutions were baked for at least 2 hours at 150— 170° before use, and left in a vacuum-desiccator over pellets of potassium hydroxide. If these precautions were not taken some of the bromophenol-blue was liable to be adsorbed as a yellow film on the glass surfaces. This adsorption was particularly strong with soda-glass, and all cells and other vessels used were of Pyrex or Hysil glass. The absorption of the solutions was measured with a Hilger Spekker absorptiometer, 1-cm. cells and the mercury 4047 Å line being used. In making a measurement, the cell was warmed slightly above 25°, and the reading taken when it had cooled to 25° after a few minutes in the instrument.

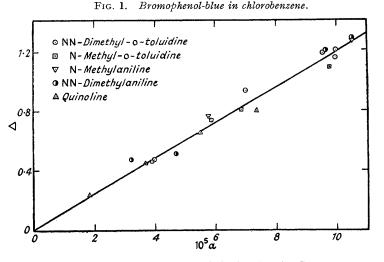

Dry solutions of both indicators are colourless, but on adding amine solution a yellow colour is produced and reaches a constant absorption when a large excess of base is added. Typical figures are given in Table 1. The negligible absorption found at 5780 Å shows that the change

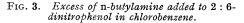
TABLE 1. Addition of NN-dimethyl-o-toluidine to bromophenol-blue in chlorobenzene.

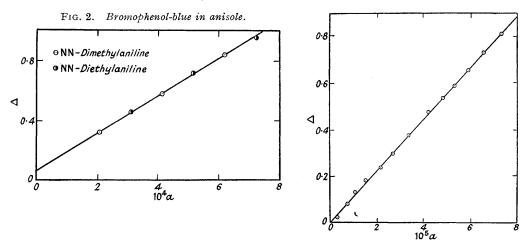
 $(\Delta = change produced in drum reading by addition of amine; indicator concentration = 0.952 × 10⁻⁴ mole/litre.)$

[Amine]	$3.65 imes10^{-5}$	$1.82 imes10^{-4}$	$9.12 imes10^{-4}$	$1.82 imes10^{-3}$	$9{\cdot}12 imes10^{-2}$	$1.0 imes10^{-1}$	$2{\cdot}0 imes10^{-1}$
Δ(4047 Å)	0.23	0.64	0.08	1.14	1.18	1.22	1.22
Δ (5780 Å)	0.00	0.00 4	0.002	0.002	0·00 ₅	0.02	0.01
	- 4	0	U	•	•		

yellow \longrightarrow blue (normally used in aqueous solution) is not involved, and the same is true for all the aromatic and heterocyclic amines studied. With strong aliphatic amines, on the other

hand, bromophenol-blue gives a red or purple colour (cf. Davis, Schuhmann, and Lovelace, J. Res. Nat. Bur. Stand., 1948, 41, 27) and was therefore not used for studying these amines. Similarly, 2: 6-dinitrophenol with some aromatic bases gives a brown colour which differs from the usual yellow colour of the basic form. It is thought that this phenomenon is due to complex formation of the same type which occurs between nitro-compounds and a variety of aromatic hydrocarbons, and 2: 6-dinitrophenol was therefore only used with aliphatic amines.


With the above reservations the absorption at 4047 Å of the basic form of each indicator was proportional to the indicator concentration and approximately independent of the nature of the amine which had been added in excess. This is illustrated in Figs. 1—3, which give plots of the Spekker reading Δ (proportional to the extinction coefficient of the solution) against the indicator concentration a. It may therefore be assumed that the change observed represents a true acid-base reaction, and that any association phenomena which may occur have little effect on the validity of Beer's law. Similar results are obtained in other solvents, and Table 2 gives the molar extinction coefficients of the basic form of bromophenol-blue in various solvents. The variations are no greater than would be expected from the changes of medium involved.


TABLE 2. Molar extinction coefficients (ε) of the basic form of bromophenol-blue.

Solvent	10 ⁻³ ε	Solvent	10 ⁻³ ε	Solvent	10 ⁻³ ε
Chlorobenzene Anisole				Dioxan Ethyl acetate	

Calculation of Equilibrium Constants.— The measurements of colour lead directly to the proportion of indicator in the basic form, but the further treatment of the results depends upon what assumption is made about the state of the reaction products, in particular whether the ions formed are free or are associated together in some way. We have calculated equilibrium constants on the assumption of association to form ion-pairs; *i.e.*, if B is the base and IH the indicator, the indicator constants are defined by

This choice is supported by accurate work on the reaction between tribenzylamine and picric acid in benzene solution (Davis and McDonald, J. Res. Nat. Bur. Stand., 1949, 42, 595) which agrees well with equation (1). The concentration of free ions in such solutions is negligible (Fuoss and Kraus, J. Amer. Chem. Soc., 1933, 55, 3614), and measurements of dielectric constant indicate that the further association of the ion-pairs is small at the concentrations used here (Maryott, J. Res. Nat. Bur. Stand., 1948, 41, 1). With some systems the values of K have a tendency to increase with increase in colour, as would be expected if further association

of ion-pairs is taking place. However, in most cases the variations are random, and other methods of calculating the equilibrium constant (e.g., assuming free ions, or binary association of ion pairs) give large systematic variations. If a is the total indicator concentration, b the concentration of base added, and r the ratio [coloured form of indicator]/[colourless form of indicator], then equation (1) becomes

r(1+r)/[b(1+r) - ar] = K (2)

This equation was used in calculating all the constants given in the following tables, r being derived directly from the Spekker reading and the absorption of the basic form of the indicator as shown in Figs. 1—3.

Tables of Results.—In the following tables all concentrations are expressed in moles per litre of solution, and the error attached to the mean values of the constants represents the probable error calculated from the usual statistical expressions.

			I ABLE	3. Z:0	-Dinitr	opnenoi	i in chiore	ovenzene.			
104b	$10^{4}a$	r	$10^{-2}K$	10 ⁴ <i>b</i>	$10^{4}a$	r	$10^{-2}K$	10 ⁴ <i>b</i>	$10^{4}a$	r	$10^{-2}K$
	n-Buty	ylamine.			Di-n-bu	tylamine	2.		Tri-n-	butylami	ne.
0.974	1.06	0.122	14	0.293	1.06	0.213	200	0.335	1.06	0.393	990
2.82	1.06	0.422	17	0.671	1.06	0.515	160	0.658	1.06	0.937	650
3.70	1.06	0.581	18	0.971	1.06	0.852	180	0.978	1.06	1.77	590
5.35	1.06	0.852	19	1.57	1.06	1.60	170	1.27	1.06	2.81	580
8.32	1.06	1.17	15	2.44	1.06	2.71	160	1.83	1.06	5.03	530
		Mean	16 ± 1			Mean 6	590 + 140			Mean 1	70 + 10

TABLE 3. 2:6-Dinitrophenol in chlorobenzene.

TABLE 4. Bromophenol-blue in chlorobenzene.

10 ⁴ <i>b</i>	10 ⁴ a	r	K	10 ⁴ b	$10^{4}a$	r	K	10 ⁴ <i>b</i>	10 ⁴ a	r	K
Aniline. N-Methylaniline.							2.		N-Ethy	vlaniline.	
$27 \cdot 1$	0.800	0.0236	8.7	5.54	0.288	0.0246	44	6 ∙36	0.50	0.190	300
56.4	0.996	0.0331	5.9	11.1	0.288	0.056	50 70	12.7	0.50	0.326	260
56.4	0.996	0.0490	8.7	$1.38 \\ 2.77$	1.44	0.0099 0.0163	73 60	3·18 6·36	$1.00 \\ 1.00$	0·089 0·173	290 280
$113 \\ 82 \cdot 2$	$0.996 \\ 1.15$	0·134 0·0763	$12 \\ 9\cdot 3$	4.80	1∙44 1∙44	0.0103 0.0315	66	12.7	1.00	0.452	360
137	$1.15 \\ 1.15$	0.226	17	100			159 ± 7	1.59	2.00	0.043	280
138	1.15	0.216	16			Mica.	1 55 <u>+</u> 1	3.18	2.00	0.089	300
45.1	1.20	0.0292	6.5	N	N-Dime	thylanili	ne.	6.36	2.00	0.202	340
116 96	$1.44 \\ 1.73$	$0.210 \\ 0.057$	18 16	0.820	0.321	0.051	640			Mean	300
24·1	2.78	0.0186	7.7	1.23	0.321	0.081	680			=	± 20
$\overline{12} \cdot \overline{1}$	5.76	0.0153	13	10.2	0.321	0.567	560				
5.50	6.42	0.0056	10	0.614		0.041	750				
		Mear	111 ± 3	1∙54 3∙08	$1.61 \\ 1.61$	$0.085 \\ 0.165$	600 580	ז	NN_Die	hylanilin	10
				0.00	1 01	Mean		0.323	0.50	0.386	21000
	0 To	luidine.					± 40	0.646	0.50	0.906	22000
403	0.599	0.667	17			-		0.323	1.00	0.312	37000
58	0.996	0.059	10	N-	Methyl	-o-toluid	ine.	0.646	1.00	0.671	27000
173	0.996	0.250	15	107	0.390	0.725	70	0.646	2.00	0.394	49000
289	0.996	0.567	20	67.0	0.585	0.350	52		Mea	n 2900	0 ± 3000
532	0.996	1.46	27	84.4	0.683	0.480	57				
115	1.60	0.211	18	6·70	$0.975 \\ 0.975$	$0.050 \\ 0.102$	75 57				
		Mea	n 18 \pm 4	$18.1 \\ 26.8$	$0.975 \\ 0.975$	0.102 0.151	57	NINI	Dimath	yl-o-tolu	idiaa
				67.0	0.975	0.469	70	1.99	-Dimein 0·398	91-0-1014 0·57	3100
N	-Ethvl-	o-toluidir	ıe.	121	0.975	0.781	65	4.07	0.398	1.23	3100
3.86	0.50	0.120	310			Mea	n 63 \pm 5	9.04	0.398	3.71	4300
15.4	0.50	0.49	320					3.98	0.697	1.10	3000
3.26	1.00	0.086	230		p-Tot	luidine.		9.04	0.697	2.92	3400
7.72	$1.00 \\ 1.00$	0.170	$\begin{array}{c} 230 \\ 280 \end{array}$	14.0	0.332	0.031	22	$0.994 \\ 1.99$	$0.995 \\ 0.995$	$0.27 \\ 0.51$	$\begin{array}{c} 3400 \\ 3100 \end{array}$
$9.65 \\ 11.6$	1.00	$0.27 \\ 0.312$	$\frac{280}{270}$	14.0	0.527	0.065	46	3.98	0.995	1.01	2900
15.4	1.00	0.43	280	$5 \cdot 0$ $8 \cdot 0$	$1.05 \\ 1.05$	$0.028 \\ 0.032$	$\begin{array}{c} 57 \\ 40 \end{array}$	5.97	0.995	1.56	2900
19·3	1.00	0.54	290	20.0	1.05	0.125	63	9.04	0.995	2.46	3000
3.86	2.00	0.080	220	30·0	1.05	0.264	88			Mea	.n 3200
11.6	2.00	0.25	220	40.0	1.05	0.508	130				\pm 300
			n 270 + 20	8·0 14·0	$2 \cdot 10 \\ 2 \cdot 10$	0·054 0·134	69 97				
			± 20	14.0	210		an 65				
						1410	± 20	N	-Methyl	-p-toluid	ine.
NN	-Dimeth	yl-p-tolui	dine.					3.72	0.50	0.160	450
1.32	0.50	0.33	2800	Ν	-Ethyl-	p-toluidi	ne.	1.86	1.00	0.058	320
2.64	0.50	0.69	2800	1.57	0.50	0.23	1600	$3.72 \\ 7.44$	$1.00 \\ 1.00$	$0.140 \\ 0.33$	$\begin{array}{c} 390 \\ 460 \end{array}$
0·33 0·66	$1.00 \\ 1.00$	0·089 0·180	3600 3500	3.14	0.50	0.56	1900	1.86	2.00	0.094	550
1.32	1 .00	0.36	3400	0.785	1.00	0.089	1300	1.86	3.66	0.087	560
2.64	1.00	0.69	3100	1·57 3·14	$1.00 \\ 1.00$	$0.23 \\ 0.56$	$\begin{array}{c} 1600 \\ 2000 \end{array}$			Mea	n 460
0.33	2.00	0.075	4000	0.785	2.00	0.104	1700				\pm 50
$0.66 \\ 1.32$	$2.00 \\ 2.00$	0·150 0·30	3700 3500	1.57	$2 \cdot 00$	0.25	2100				
1 02	2 00			3.14	$2 \cdot 00$	0.57	2400				
		Mea	n 3400 ± 300			Mea	n 1800		Pvr	ridine.	
			1.000				± 100	1.34	0.50	0.36	3000
	<u> </u>				• •			1.69	0.50	0.53	3500
0 50 4		noline.	0=00	0.000		inoline.	11000	3.38	0.50	1.03	3300
$0.734 \\ 1.00$	$0.50 \\ 0.50$	0·40 0·73	6700 9300	$0.290 \\ 0.580$	$0.50 \\ 0.50$	$0.22 \\ 0.57$	$11000 \\ 14000$	$0.669 \\ 0.845$	$1.00 \\ 1.00$	$0.160 \\ 0.244$	3000 3800
0.220	1.00	0.110	9200 9200	0.870	$0.50 \\ 0.50$	0.93	15000	1.34	1.00	0.33	3000
0.430	1.00	0.235	9700	0.290	1.00	0.23	18000	1.69	1.00	0.45	3300
1.12	1.00	0.60	8100	0.290	1.00	0.21	18000	0.334	2.00	0.070	3500
$2 \cdot 15 \\ 5 \cdot 91$	$1.00 \\ 1.00$	$1.03 \\ 2.50$	6300 4800	0·580 0·870	$1.00 \\ 1.00$	0·44 0·65	$16000 \\ 14000$	$0.669 \\ 0.845$	$2.00 \\ 2.00$	$0.133 \\ 0.196$	$\begin{array}{c} 3100 \\ 3800 \end{array}$
1.00	2.00	$\frac{2.50}{0.35}$	4800 7200	0.870	2.00	$0.05 \\ 0.27$	17000	0.040	2.00		n 3300
		Mean 750					00 + 500			mea	± 200
	1		100		2,2						

 TABLE 5. Bromophenol-blue in anisole.

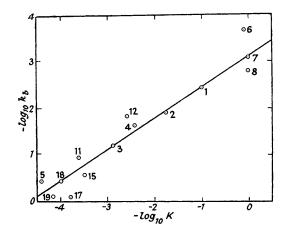

			11101	. D. D.	mopile	1000 0000					
10 1 <i>b</i>	101a	r	K	10 ⁴ b	$10^{4}a$	r	K	104b	$10^{4}a$	r	K
	An	iline.			0 - T a	luidine.			n-Chlo	roanilina	
170	0.50	0.21	12	157	0.50	0.102	6.5	2400	0.50	0.140	
340	0.50	0.38	11	.314	0.50	0.102	7.6	600	1.00	0.062	1.0
85	1.00	0.072	9	157	1.00	0.117	7.5	1200	1.00	0.136	1.1
116	1 .00	0.126	11	314	1.00	0.29	$9 \cdot 2$	2400	1.00	0.313	$\hat{1}\cdot\hat{3}$
170	1.00	0.075	10	629	1.00	0.86	14	300	2.00	0.023	$\overline{0} \cdot \overline{8}$
340	1.00	0.39	11	79	2.00	0.072	9.2	600	2.00	0.057	0.9
85	2.00	0.072	9	157	2.00	0.120	10.9			Me	an 0.9
170	2.00	0.24	14			\mathbf{M}	ean 9·3				+ 0.2
		Mea	n 11 ± 1	l			<u>⊹</u> 1·6				
	N Math	y l aniline			Mathail	-o-toluid	line				
54.0		-								yl-p-tolu	
$54.6 \\ 137$	0·50 0·50	$0.23 \\ 0.73$	$\begin{array}{c} 43 \\ 53 \end{array}$	61·8 123·6	0·50 0·50	0·26 0·61	41 49	0.523	0.50	0.130	2800
27.3	1.00	0.13 0.143	53	30.9	1.00	$0.01 \\ 0.145$	45	1.05	0.50	0.25	2600
54·6	1.00	0.35	64	61.8	1.00	0.35	58	$0.262 \\ 0.523$	$1.00 \\ 1.00$	0·063 0·126	3100
137	1.00	0.70	51	123.6	1.00	0.68	55	1.05	1.00	0.120 0.23	$\begin{array}{c} 3100 \\ 2700 \end{array}$
13.7	$2 \cdot 00$	0.076	56	30.9	2.00	0.150	49	0.262	2.00	0.055	3500
27.3	$2 \cdot 00$	0.120	56	61.8	2.00	0.301	49	0.523	2.00	0.101	3100
54.6	$2 \cdot 00$	0.34	63			Mea	11148 ± 4				
		·Mea	n 55 🛨 4	L					101	lean 30	00 ± 200
				1N 1N -	-Dimeth	yl-0-tolu	idine.				
		ethylanili		1.46	0.20	0.47	3600	N	-Fthul	p-toluidi	-10.0
2.45	0.50	0.169	710	2.92	0.50	0.92	3400	1.42	0.50	0.17	
4.90	0.50	0.35	740	0.73	1.00	0.24	4500	2.84	$0.50 \\ 0.50$	$0.17 \\ 0.32$	$\begin{array}{c} 1300 \\ 1200 \end{array}$
9.80	0.50	0.64	670	0.73	1.00	0.175	4100	0.71	1.00	0.081	1300
1.23	1.00	0.098	860	1.46	1.00	0.40	3400	1.42	1.00	0.16	1300
$2 \cdot 45 \\ 2 \cdot 45$	$1.00 \\ 1.00$	0·165 0·174	$\begin{array}{c} 710 \\ 760 \end{array}$	0.37	2.00	0.098	5300	2.84	1.00	0.29	1100
2·45 4·90	1.00	$0.174 \\ 0.34$	730			Mea	in 4100	0.71	2.00	0.053	900
1.23	2.00	0.089	840				\pm 500	1.42	2.00	0.120	1000
4 .09	2.00	0.30	680		N_Ethan	-o-loluid	lima		м	ean 11	00 <u>-</u> 100
- • •			n 740	6.60	0.50				101	can 11	
			± 40	13.2	$0.50 \\ 0.50$	$0.26 \\ 0.59$	$\begin{array}{c} 400 \\ 450 \end{array}$				
				26.4	$0.50 \\ 0.50$	1.41	490		Pyr	idine.	
	-	laniline.		3 ·30	1.00	0.13	420	0.70	0.50	0.32	5500
10.3	0.50	0.28	270	6.60	1.00	0.23	350	1.40	0.50	0.56	4600
20.6	0.50	0.53	260	13.2	1 .00	0.51	400	0.32	1.00	0.140	6200
4 1·2	0.50	1.03	250	1.65	2.00	0.043	280	0.35	1.00	0.140	6200
5.15	1.00	0.145	290	3.30	2.00	0.072	230	0.70	1.00	0.26	5300
10.3	1.00	0.298	290	6.60	2.00	0.12	230	0.70	1.00	0.28	5800
$20.6 \\ 5.15$	$\frac{1 \cdot 00}{2 \cdot 00}$	0·56 0·121	$\begin{array}{c} 280 \\ 250 \end{array}$			Mean	360 ± 70	1.40	1.00	0.51	4800
10.3	2·00 2·00	0.121 0.24	$\frac{230}{240}$					1.40	1.00	0.54	5100
100	2.00					uidine.		$0.35 \\ 0.70$	$2.00 \\ 2.00$	$0.103 \\ 0.44$	$\begin{array}{c} 6300 \\ 5500 \end{array}$
			n 270	38.2	0.20	0.19	50	010			
			\pm 10	76.4	0.50	0.38	50		м	ean 560	00 ± 400
	o-Chlor	oaniline.		19.1	1.00	0.103	54				
1290	0.50	0.34	$2 \cdot 6$	38.2	1.00	0.21	56		Quin	voline.	
1310	0.50	0.27	$2 \cdot 1$	76·4 19·1	$1.00 \\ 2.00$	0·47 0·117	$\begin{array}{c} 62 \\ 62 \end{array}$	0.427	0.50	0.26	7900
647	1.00	0.074	.1.1	38.2	$2.00 \\ 2.00$	0.22	60 60	0.427 0.853	$0.50 \\ 0.50$	$0.20 \\ 0.53$	7800 7800
655	1.00	0.107	1.6	00.7	2.00			0.333 0.213	1.00	$0.53 \\ 0.117$	7800 11000
1290	1.00	0.176	1.4			mea	n 56 \pm 3	0.427	1.00	0.22	8800
1310	1.00	0.145	1.1	N-	Methvl-	p-toluidi	ne.	0.853	1.00	$0 \cdot \mathbf{\overline{46}}$	8500
2590	1.00	0.369	1.4	4.94	1 00	0.136	000	0.213	2.00	0.081	13000
$\begin{array}{c} 647 \\ 655 \end{array}$	$2.00 \\ 2.00$	0·043 0·049	0·7 0·8	9.88	$1.00 \\ 1.00$	0.30	280 310	0.427	2.00	0.160	11000
1290	2.00	0.049 0.082	0.6	19.7	1 .00	0.68	350			Me	an 9700
1230	2 00			4.94	2.00	0.120	320				± 1000
			$\ln 1.3$	9.88	2.00	0.32	340				1_ 1000
		:	± 0.2	9.88	2.00	0.30	330				
	m-Chlor	oaniline.		19.7	2.00	0.64	310		isoQu	inoline.	
4050	0.50	0.87	2.1			Mean	320 ± 15	0.366	0.50	0.30	12000
1010	1:00	0.093	$\overline{0}\cdot\overline{9}$					0.732	0.50	0.64	12000
1350	1.00	0.176	0.9	N	N Dieti	hy l anilin	e.	0.183	1.00	0.122	17000
2030	1.00	0.207	1.0	0.516	0.50	0.77	13000	0.366	1.00	0.22	12000
1010	2.00	0.070	0.6	1.03	0.50	1.76	20000	0.732	1.00	0.49	12000
2030	2.00	0.143	0.7	0.258	1.00	0.24	38000	0.183	2.00	0.074	17000
			an 0.9	0.516	1.00	0.51	28000	0.366	2.00	0.145	13000
			± 0.2		Me	an 25000	0 ± 3000		Mea	an 14000	0 ± 1500

TABLE 6. Summary of results with bromophenol-blue in chlorobenzene and anisole.

 pK_b values in water from Hall and Sprinkle (J. Amer. Chem. Soc., 1932, 54, 3469); $k_b = \text{catalytic}$ constant in the decomposition of nitramide (Bell and Trotman-Dickenson, J., 1949, 1288).

]	$\log_{10} K$		1
	_		DL OM	pK_b	$-\log_{10}k_b$
	Base	PhCl	Ph·OMe	(H_2O)	(Ph·OMe)
].	Aniline	-1.0	-1.0	9.42	$2 \cdot 46$
2.	N-Methylaniline	-l·8	-1.74	9.15	1.92
3.	NN-Dimethylaniline	-2.80	-2.87	8.94	1.19
4.	N-Ethylaniline	-2.48	-2.43	8.89	1.64
5.	NN-Diethylaniline	-4.5	-4.4	7.44	0.44
6.	o-Chloroaniline		-0.1	11.4	3.70
7.	m-Chloroaniline		0.0	10.48	3.11
8.	p-Chloroaniline		0.0	10.00	2.83
9.	o-Toluidine	-1.26	-1.0	9.61	
10.	N-Methyl-o-toluidine	-1.80	-1.68	9.41	
<u>11.</u>	NN-Dimethyl-o-toluidine	-3.51	-3.61	8.14	0.94
12.	N-Ethyl-o-toluidine	-2.43	-2.6	9.07	1.83
13.	p-Toluidine	-1.8	-1.75	8·93	
14.	N-Methyl-p-toluidine	-2.66	-2.51	8.67	
15.	NN-Dimethyl-p-toluidine	3.53	-3.48	8.50	0.58
16 .	N-Ethyl-p-toluidine	-2.43	-2.6	9.07	1.83
17.	Pyridine	-3.52	-3.75	8.63	0.09
18.	Ouinoline	-4.0	-3.99	9.00	0.44
î9.	isoQuinoline	-4.2	-4.12	8.76	-0.11

DISCUSSION

The indicator constants obtained are not of high accuracy, but are adequate for a semi-quantitative discussion of the effect of substitution. Table 6 shows that the values of K in chlorobenzene and anisole lie very close together in spite of considerable differences in chemical nature and dielectric constant of the solvents. This is good evidence that neither solvent is playing any specific part in determining the position of equilibrium, and the data are therefore more suitable than basic strengths in aqueous solution for judging the effects of substituents. This appears most clearly in the results for the three butylamines in chlorobenzene (Table 3). The three indicator constants are 1600, 17 000, and 69 000 for the primary, secondary, and tertiary amine, respectively, showing the expected progressive effect of introducing the butyl groups. In aqueous solution, on the other hand, the values of pK_b are $3\cdot39$, $2\cdot69$, and $4\cdot07$: the unexpected rise from the secondary to the tertiary amine occurs also with other aliphatic amines in water, and is no doubt due to hydrogen-bonding between the water and the amine cations (cf. Trotman-Dickenson, *loc. cit.*).

Notes.

The indicator constants for the aromatic amines (Table 6) follow the expected trends, which do not differ qualitatively from those found in aqueous solution. Successive substitution of methyl groups in the amino-group increases the basic strength, the second one producing a larger change than the first. The effect of ethyl is considerably greater than that of methyl. A methyl group in the ring o- or p- to the amino-group also increases the basic strength, though the effect is smaller than that of N-substitution. Here again some of the results in water are anomalous, since o-toluidine appears to be a weaker base than aniline, and p-toluidine stronger than N-methylaniline.

It is of interest to compare the indicator constants of the aromatic and heterocyclic amines in anisole with their catalytic constants in the decomposition of nitramide in the same solvent, measured by Bell and Trotman-Dickenson (J., 1949, 1288). The latter are recorded as $-\log_{10}k_b$ in Table 6, and Fig. 4 shows a plot of $\log_{10}k_b$ against $\log_{10}K$. There is an approximately linear relation over more than four powers of ten in K, and there are no signs of the systematic deviations found if dissociation constants in water are used as a measure of basic strength, when separate linear relationships are found for the classes of primary, secondary, tertiary, and heterocyclic amines. Similar behaviour has been observed in the base-catalysed decomposition of nitramide in *iso*amyl alcohol (Brönsted, Delbanco, and Tovborg-Jensen, Z. *physikal. Chem.*, 1934, 169, A, 361), where the observed catalytic constants are related simply to basic strengths measured in the same solvent, but not to basic strengths in water. It is likely that the same situation will arise whenever the range of acid-base systems used as catalysts involves substituents upon acid-base strength in polar solvents will often be complicated by solvation effects.

Our thanks are due to Monsanto Chemicals, Limited, for a maintenance grant to one of us (J. W. B.).

PHYSICAL CHEMISTRY LABORATORY, OXFORD.

[Received, December 31st, 1951.]